
Recommender systems in visual programming
environments

Phil de Groot
NHTV University of Applied Sciences

Breda
Email: phildegroot5@gmail.com

Robert Grigg
NHTV University of Applied Sciences

Breda
Email: grigg.r@ade-nhtv.nl

Abstract—Recommender systems help coding productivity by
providing interactive suggestions during the editing process. Such
systems help to keep the coders in the flow of the editing process
by relieving some of the cognitive load. Little work, however,
is done in integrating a recommender system in a visual pro-
gramming environment. In this paper we explore implementing
a recommender system to provide suggestions in the Blueprint
visual programming environment found in Unreal Engine 4. We
have found that using our suggested method we are able to
provide an accurate suggestion in a 5-entry short-list in 73%
of situations. User tests have shown that perceived productivity
increased when using the implemented recommender system,
however, timings taken from the same user tests showed that
actual productivity decreased by 4%.

I. INTRODUCTION

Most modern game engines include a visual programming
environment (VPE) for asset creation or editing. The Blueprint
editor in Unreal Engine 4 [1] and Flow Graph in CryEngine
[2] allow for the creation of logic sequences and behaviors in
an environment that is friendly to all professions found on a
game production team. While building graphs in these VPEs
the user has to switch between two main tasks: 1) translating
the purpose of the graph into nodes and 2) finding the required
nodes for the desired operations. Finding the correct node in
lists that contain hundreds of node-types can be challenging.
Through search functions this challenge can be partly reduced,
but still requires the user to know the exact name to efficiently
find the desired node. Partial search terms can still lead to a
significant number of results the user has to browse through
(searching for ’location’ yields 40 results in Blueprint). These
searches for nodes can take significant time and break the
chain of thought while creating graphs.

In regular programming a similar problem exists. The
programmer has to remember the exact name of variables and
functions in order to use them. Spelling or capitalization mis-
takes will result in compilation errors. To solve this problem
most programming environments help the user by providing an
interactive set of suggestions to the user as to what they might
intend to use while writing code. The purpose of this paper
is to investigate the implementation of such a recommender
system in a VPE.

The remainder of this paper is structured as follows. The
next section further defines the problem. Section III discusses
previous work done in the field of recommender systems.

Section IV describes the proposed implementation. Section V
discusses the test design and in section VI we present results
obtained from these tests. Section VII summarizes the paper.
Finally, section VIII presents some areas for further research.

II. PROBLEM DEFINITION

Most modern coding development environments provide the
user with suggestions while writing code. Such systems have
generally been accepted to increase productivity by allowing
the user to insert long names with few interactions and
lowering the cognitive load on the user by relieving them of
the need for remembering the exact name for each variable and
function [3, 4, 5, 6]. There is little work, however, done on
integrating such a suggestion system to a VPE. The purpose of
this paper is to explore and implement a recommender system
in the Blueprint VPE of Unreal Engine 4 [1] in order to assess
whether or not productivity is affected by such a system.

With this research we propose two hypotheses:
H1. Productivity will increase in a visual programming

environment using a suggestion system.
H2. Context is important to provide accurate sugges-

tions in a graph-based environment.
It has been accepted that productivity increases in a coding
environment in using a suggestion system such as Intellisense
[7] found in Microsoft’s Visual Studio. We suspect that
productivity will also increase by implementing a suggestion
system in a VPE, but not for the same reasons. Productivity
increases in a coding environment due to the user having to
type only a partial name for a function, variable or type and
let the tool complete the rest. As a secondary effect this allows
the user to only remember partial names in order to use them.
In a VPE very little typing is required as we observed that
most of the interaction is done through the user interface of
the environment. By providing suggestions for predictions of
nodes that the user might require we can reduce the time
required for navigating the user interface in order to find the
correct node.

In this research we will integrate a recommender system in
the Blueprint system found in Unreal Engine 4. We opted
to go with Unreal Engine 4 as it is the latest iteration of
an industry standard game engine and provides full source-
code access giving us complete freedom. For the suggestions
we will limit ourselves to the traditional style of suggestion



systems by providing a suggestion of a single node that might
be used.

III. PREVIOUS WORK

A. Text based recommender systems

There are a number of algorithms used for prediction of
text and/or code. Most of the prediction structures are built
for plain text, as this is the most popular use case (including
coding environments and search suggestions for websites). In
this section we will discuss work done in the field of prediction
for text and/or code.

Virtually all modern search application employs query auto-
completion to aid the user in their search effort [8]. A popular
choice for query and word auto-completion is the use of a trie.
The trie, also called a prefix graph, is an ordered tree data
structure. Each node contained in the graph does not store the
full key but only a portion of it. To reconstruct the full key for
a specific node the value of the parent node must be recursively
prepended to the current key value. Once this process has
reached the root of the trie the full key is reconstructed.

The trie data structure allows for efficient lookup for com-
pletions given an existing string by taking the edge corre-
sponding to the next character at each node in the current
search string. If we have the string ’te’ for which we will use
the example trie found in Figure 1, the suggestion generation
process would work as followed: at the first node the ’t’ edge
would be taken and at the second node the ’e’ branch is be
taken landing us at the ’te’ node. This node has the ’tea’, ’ted’
and ’ten’ leaf nodes which can then be presented to the user as
completion suggestions. In a real-world environment the trie
will contain a large number of leaf nodes, for instance all the
words in the English language. Many variations exist on this
base trie model to increase effectiveness in certain situations.
An example is the completion trie [8] which encodes scores
in the trie in order to improve the quality of suggestions.
Each node contains the highest score found in the child nodes,
which can then be used by an A* algorithm to find the highest
ranking suggestions given a prefix.

The n-gram is a statistical model for language and was
originally introduced by Shannon in 1948 [9]. N-grams have
recently also been applied to code completion [10]. N-grams
are able to model sequences of symbols in order to create
patterns from which predictions can be made. A sequence
in an n-gram is always of n-length. Building a tri-gram (3-
gram) of the string "abcde" would result in 3 tri-grams: "abc",
"bcd" and "cde". Creating an n-gram from large sample sets
(such as code bases and/or dictionaries) allows for prediction
of probabilities for the next symbol given an input of n-1
length. From the resulting n-grams that contain our n-1 length
prefix symbol set all the suggestions (the last symbol in the n-
gram) are collected. The probabilities for each suggestion are
calculated by normalizing the number of uses such that the
sum of all the resulting suggestion probabilities equals to one.
This model can be extended to use tokens or sets of tokens
for each symbol in order to provide suggestions on a function
or variable level in code as suggested by Ohara et al. [10].

Fig. 1. Example trie.

The recently introduced cache language model extends the
n-gram model by capturing local regularities in a small local
cache [11]. This model works by maintaining two n-gram
sets: a global (static) set built from all the available data
and a local (dynamic) set constructed from local data. The
local set is generated from local data around the location the
user is editing. This can include the entire file the user is
currently editing, or only a small portion of L lines around
the cursor location. As described by Tu et al. [11] source-
code is a highly local language, meaning that a significant
portion of the encountered tokens are only found in a single
file. According to tests performed by Tu et al. 25% of tokens
in the Java corpus and 42% in the Python corpus were only
found in a single file. Incorporating the suggestions found from
the local set as well as the suggestion acquired from the static
set significantly improved the quality of suggestions [6].

Most prediction algorithms work by suggesting a comple-
tion of a word or name. There are, however, certain solutions
allow the user to work on a higher level by providing sug-
gestions for entire snippets of code. GraPacc [12] is such a
completion algorithm. GraPacc tries to provide the user with
suggestions of entire snippets of code, allowing the user to
focus on what they want to do rather than how they want to do
it. GraPacc generates predictions via the use of groums [13].
A groum is an acyclic graph-based representation of a pattern
(i.e. a snippet of code where function calls and variables are
represented as nodes). Groums are created from the existing
context and used to query the suggestion database for a partial
match. A set of different groums is returned from the database
and if one is accepted by the user the missing parts provided
by the accepted groum are tailored to the existing code for
seamless integration, providing a snippet based suggestion



system.

B. Graph-based recommender systems

With VPEs becoming more popular in recent iterations
of big game engines (examples include Blueprint in Unreal
Engine 4 [1] and Flow Graph in CryEngine [2]) efficient
workflow in these graph-based environments is becoming more
important. Little work, however, is available regarding explo-
ration of recommendation system in graph-based environments
[14].

VisComplete [15] is a system that was built to generate
and provide suggestions for the visualization of data within
VisTrails [16]. Within this work Koop et al. describe a path-
based approach for mining data-graphs as well as a method for
generating the predictions. The method described in this work
has similarities to an n-gram approach as they both generate
subsets of data. The path-based approach, however, keeps track
of two pieces of data: the anchor vertex and the context path.
The anchor vertex is the prediction for each set of nodes
defined in the context path. The context path contains a set
of nodes that are connected to this node. The nodes contained
within the context path all lead in one direction, either forward
(input -> output) or backwards (output -> input). A second
difference from the n-gram approach is that the path does not
have a fixed length, only a maximum length. An example of
output data created by this algorithm can be seen in Figure 2.

Fig. 2. Forward path suggestions created for vertex D.

Bruch et al. [4] discussed that properly taking the context
in account for finding suggestions will result in more accurate
suggestions. By tailoring the suggestions to the specific context
in which they are used will lead to more precise suggestions,
while leaving the context out of the equation will result in
more general suggestions. The contextual information in a
graph-based environment, such as Blueprint, is drastically
different from a textual or coding environment. In a strong-
typed object-oriented programming language like C++ we
have access to contextual information such as the object oper-
ated upon and the function containing the current code. With
these pieces of contextual information a set of suggestions that
do not apply to our object can already be filtered out. In a VPE
there is less contextual information that is readily accessible.
In a VPE, such as Blueprint, the contextual information is
restricted to the data-type the next node must have and the
node it has to connect to provided the user tries to create a
new node from dragging a pin on an existing node.

IV. IMPLEMENTATION

A. Proposed prediction structure

For our proposed implementation an optimistic completion
algorithm has been selected in an attempt to provide entries
that have the highest probability to be correct, while minimiz-
ing the number of entries returned. This approach has been
selected because we aim to induce less cognitive load on the
user than a pessimistic completion algorithm which provides
all possible suggestions that the algorithm is able to find
[5]. In addition to the lower cognitive load the default node
creation menu in the Blueprint environment already provides
a pessimistic completion tool that shows all possible nodes the
user can spawn.

For the implementation a prediction algorithm inspired by
n-grams and the path-based approach discussed by and Koop
et al. will be used [9, 15]. The inspiration from the node-
based approach was taken as this approach has proven to work
effectively in a graph-based environment. The implementation
will contain three pieces of data: the context path, anchor
vertex and prediction vertex. This data-structure contains an
extra prediction vertex field when compared to the path-based
structure outlined by Koop et al. and will be added for more
clarity and increased ease of indexing of the data-structure.
In the new data layout the anchor vertex will describe the
node-type for which the suggestion applies to. The context
path, conversely, will describe the previous connected nodes
to the anchor vertex and the prediction vertex will describe
a suggested node-type given a particular anchor vertex and
context path.

B. Selected data gathering method

Creating entries for the suggestion database has been iden-
tified to be performed in two situations. 1) The user connects
two nodes or 2) the user triggers a rebuild of the suggestion
cache. In the first situation only the two nodes which were
connected will need to be parsed for new entries. This aims
for the recommender system to gather data on node use during
user editing. The rebuild situation will clear the complete
suggestion database and will build new suggestions using
all available nodes found in the Blueprints contained in the
currently open project.

For each parsed node connected nodes will be explored in
a recursive manner to create the connection paths. This can be
done in both the forward and backwards directions separately.
If the node connection path is large enough (i.e. it contains
more than two entries) a suggestion entry will be created.
The examined node will be used for the prediction vertex,
the first node of the connection path is to be used as the
anchor vertex and the remainder of the connection list will
function as the context path. Table I shows an example of
suggestions that would be created when parsing node E and
F for the graph found in Figure 3. The generated suggestion
entries will then be added to one of the lists found in the
database depending on the direction the connected nodes were
parsed in (forward or backwards). It is intended that separate



lists for the two directions will be maintained to prevent the
suggestions becoming mixed between directions.

TABLE I
FORWARD SUGGESTION TABLE FOR FIGURE 3.

Context Path Anchor Vertex Suggestion Vertex
A -> C D E
B -> C D E

C D E
A -> C D F
B -> C D F

C D F

Fig. 3. Suggestion graph for Table I.

C. Proposed suggestion generation algorithm

Suggestion generation happens when the user triggers a
query to the system. This is only done when the user tries to
create a new node in the graph by dragging a new connection
from a pin on an existing node. To generate appropriate
suggestions for a particular node the system goes through
several steps in order to find the most relevant suggestions.
Each step further refines the results obtained from the previous
step.
Step 1: Create context information: in the first step con-

text information is constructed. A portion of the
information is received as input to the query.
This input includes the graph, node and pin for
which suggestions are queried. Other information,
such as the context paths, is created within this
step. All available context paths are reconstructed
through recursively following connections on the
connected nodes through to a certain depth in the
reverse direction of the suggestion. If a suggestion
is queried for a forward direction (output -> input)
the context paths are created by exploring all
connections in the backwards direction (output ->
input). All constructed context paths (there can be
multiple) are stored within the context information
structure.

Step 2: Find all suggestions for the current node in the
database: the node-type that is described in the
context data is used to query the suggestion
database. The list that is returned contains all the
suggestions that have the specified node type as
their anchor vertex and are suitable for the queried
direction.

Step 3: Remove incompatible suggestions: all incompati-
ble entries are removed from the list of sugges-
tions based on data-types. Each pin has a data-
type associated with it, for example integer, float
or string. Connections between two pins can only
be created with the same data-types. All entries
in the list that contain a prediction vertex which
does not have a pin that can be connected to the
pin specified in context data are removed.

Step 4: Calculate context similarities: the similarity be-
tween the suggestion context path and all available
node context paths are calculated. For each con-
text path in the context information a suggestion
item is emitted with the context similarity and the
prediction vertex node-type.

Step 5: Combine suggestions: all suggestions that were
emitted in the previous step are processed and all
suggestions having the same prediction vertex are
collapsed into one. This ensures that every entry
in the output list contains an unique suggested
node-type. When two entries are collapsed into
one the highest context similarity score is selected
and used for the collapsed node. The number of
uses from both entries are added together and used
for the new collapsed entry.

Step 6: Select top-n suggestions: the remaining entries are
sorted based on the context similarity score and
number of uses. From this sorted list the top-n
highest ranking entries are returned and displayed
to the user.

V. TEST DESIGN

A. User tests

To test the first hypothesis defined in this document (H1. see
Section II) a user test is designed. This user test was designed
to provide results on how much productivity is affected by the
implemented recommender system. For this test participants
will be asked to solve a predefined task using the Blueprint
system. The participants will be required to solve the specified
task three times. The first time will be performed as a trial run
to familiarize the participant with the task and allow them to
find a solution that works. The second and third runs they will
be asked to solve the same task again. One of the two runs will
have the suggestion extension enabled and the other run will
have the suggestion system disabled. Each iteration of solving
the same problem should become easier for the participant
due to more familiarity of the task at hand. Which of the two
runs will have the extension enabled is randomized for each
participant in an attempt to offset this learning effect as much
as possible. The second and third runs will be recorded via
screen capture to provide timings on how long participants
take to solve the specified problem.

After the participants complete their three test run cycles
they will complete a small survey. This survey is used to gather
subjective results on how they felt the system performs. The



TABLE II
USER TEST RESULTS. (TIM SHOWS TIME IN MENU)

Participant First Run Enabled Without With Difference %-Difference Without TIM With TIM Difference %-Difference
1 Yes 1:25 1:38 0:13 13% 0:24 0:27 0:03 11%
2 No 6:52 6:35 -0:17 -4% 1:32 2:27 0:55 37%
3 No 6:55 5:50 -1:05 -15% 1:32 1:30 -0:02 -2%
4 Yes 1:58 2:30 0:32 21% 0:37 0:30 -0:07 -19%
5 No 3:20 3:02 -0:18 -9% 0:39 0:57 0:18 31%
6 Yes 10:44 11:45 1:01 9% 2:58 2:45 -0:13 -7%
7 No 4:12 3:42 -0:30 -12% 1:22 1:07 -0:15 -18%

survey will also provide feedback on the implemented system
to identify potential usability issues.

B. Context importance test

To test the second hypothesis defined in this document
(H2. see Section II) an automated test will be set up. We
can objectively answer whether or not the quality of the
suggestions is impacted positively, negatively or not at all from
taking the context into account while making suggestions by
performing two automated tests and comparing their results.
One of these tests will have the context calculations disabled.
According to Bruch et al. [17] an automated test gives us
more objective results than manual tests and allows for larger
test sets. Furthermore, they suggest to use the 10-fold cross-
validation technique to obtain the results as this method is
proven to give accurate results [18].

In a 10-fold cross-validation the available data is split up
into 10 different equal-sized sets, called the folds. Nine of
these folds are used as training data for the system. The final
fold is treated as testing data and is used as validation to assess
whether or not suggestions are valid. This process is repeated
k times, where k is equal to number of folds specified, in the
case of a 10-fold cross validation k = 10. With each iteration
the fold selected as the testing data is changed in such a way
that after finishing all iterations each fold is used as testing
data once.

Bruch et al. define two measures of the performance for
a recommender system: recall and precision [17]. Recall
measures the completeness of the recommendations expressed
as the number of valid suggestions made divided by the
number of suggestions the system should have made. Precision
measures the relevance of all suggestions which is measured as
the total number of suggestions made divided by the number
of useful suggestions made.

Due to the design of the recommender system described
within this paper measuring recall would not provide inter-
esting results. The default implementation provided by UE4
should already provide us with 100% recall as it lists all
the available nodes for a specified connection type. Precision,
however, is an important metric to test for. The higher the
precision we can achieve the more effective the system should
be as more of the suggestions are potentially correct. If
we were to achieve a 100% precision, i.e. every time the
system is queried for a suggestion it is able to produce
the expected node-type in the suggested short-list, we can

maximize efficiency due to the search process being confined
to this short-list of suggestions. We will measure precision in
a different manner in the performed tests, however, where a
query will pass the precision measurement if the expected node
is contained within the returned suggestion short-list presented
to the user.

VI. RESULTS

A. User tests

The full timings for the user tests can be found in Table II.
First Run Enabled specifies whether or not the first of the two
runs had the suggestion system enabled. The Without and With
columns show the times it took the participant to complete
the task without the suggestion system enabled and with the
system enabled. Without TIM and With TIM show how much
of the time the participants spent in the node spawning menu.

All participants were able to solve the problem in less time
the third run than in their second run. On average participants
were 12% faster in their third run. Participants who had the
system enabled the second run were on average 14% faster in
their third run, while participants who did not have the system
enabled in their second run were only 10% faster in their third
run. This indicates that the users were slightly slower (4%)
to complete their task when the system was enabled, as on
average the participants took more time on their second run
than the third run when the system was active.

A situation we saw in the tests was where the participant
inspected all the suggestions presented to them in the sugges-
tion short-list before starting a manual search for their required
node-type once they found that it was not contained in the
short-list. In this situation the search time is prolonged by the
addition of the search through the suggestion short-list. On
average the participants spent 5% more time in menus (see
Table II) when the suggestion system was enabled.

Another situation that occurred during the tests was that on
several occasions the participants would ignore the suggestions
provided by the system and immediately start a manual search.
This could be caused by the way the participants are used to
working with Blueprint, for instance by first creating nodes
and connecting them afterwards. Such a workflow renders the
implemented suggester system useless as it cannot generate
suggestions in this manner. Changing the way someone inter-
acts with a system they are already familiar with requires a
change over a longer time, for which this test was too short.



B. User test survey

The user test survey contained 4 questions that participants
could rate from 1 to 5, where 1 is to strongly disagree with
the statement and 5 is to strongly agree. The full results of
the survey can be found in Table III.

(Q1). Did the system provide relevant suggestions? This
question gives an indication of the perceived quality of the
suggestions made by the system. The participants on average
rated this statement a 4.1 thus strongly agreeing with this
statement. From this we can conclude that the suggestions
presented by the system on average are relevant to what the
user was intending to do.

(Q2). Did the system rank suggestions correctly by rele-
vance? This question gives an indication of how well result-
ing suggestions are sorted when presented to the user. The
participants on average rated this statement a 3.1 meaning
they feel slightly more positive than neutral. Most participants
mentioned they did not noticed anything particular about the
sorting order of the system. From this we can say that the
sorting order in the current system does not stand out to be
excellent or terrible and is currently sufficient.

(Q3). Did the system speed up development time? This
question is aimed to identify whether or not the system speeds
up development time. On average the participants felt that the
tool speeds up development time ranking this question with a
3.9. This is in contrast to the results we gathered from the user
tests where on average the participants were slightly slower
when the system was enabled.

(Q4). Is the system well integrated within the environment?
If the system is not easy to use or well integrated in the
environment the time potentially saved by using suggestions
can be offset by the time it takes to correctly use the suggestion
system. The participants were very positive about this and
scored this question the highest with an average mark of 4.4.
This indicated that the tool is perceived as well integrated
within the environment and does not have any major problems
in usability.

TABLE III
USER TEST SURVEY RESULTS

Participant Q1 Q2 Q3 Q4
1 4 3 4 5
2 3 3 3 4
3 5 3 4 4
4 5 4 5 4
5 4 2 4 5
6 4 4 3 5
7 4 3 4 4

Avg 4.1 3.1 3.9 4.4

C. Context importance result

Two 10-fold cross validation tests were performed. The first
test had the system compare context similarities and sort all the
available suggestions based on the similarity of the contexts.
The second test had the calculation of contexts disabled and
as a result the suggestions were sorted on the number of

uses found for each suggestion. In both tests the short-list
included the top-5 suggestions for each query. This short-list
was checked for the expected node-type. A query was marked
as passed if the suggestion short-list included the expected
node-type. The tests were performed on a set of Blueprints
containing about 8000 nodes. The nodes were gathered from
all available Blueprints, shuffled in a predictive manner and
split up into 10 folds. As a result of all nodes not having the
same amount of valid connections which we can perform a
test on the number of tests performed between folds fluctuates
slightly.

The results for the two tests can be found in Tables IV and
V. The precision column in both tables shows the percentage
of tests performed to pass our precision test. From these results
we can see that taking the context into account contributes
to significantly more accurate suggestions being made. The
overall results improved by almost 17% when the context is
taken into account. The R1 to R5 columns show where the
correct suggestions show up in the suggestion short-list, R1
being the first entry and R5 being the last. From this we see a
distinct increase in the amount of correct suggestions found in
the higher ranks of the suggestion shortlist when the context
calculation is enabled. An average of 10% more of the correct
suggestions made by the system appear in the first rank when
context calculation is enabled.

TABLE IV
CROSS VALIDATION RESULT WITH CONTEXT

Fold #Tests #Passed Precision R1 R2 R3 R4 R5
1 1546 1135 73.41% 62% 23% 9% 4% 2%
2 1652 1241 75.12% 60% 23% 10% 4% 3%
3 1594 1133 71.07% 64% 22% 7% 4% 3%
4 1592 1156 72.61% 63% 22% 9% 4% 2%
5 1656 1212 73.18% 63% 22% 8% 4% 3%
6 1571 1164 74.09% 66% 21% 8% 3% 2%
7 1638 1182 72.16% 62% 24% 8% 4% 2%
8 1634 1215 74.35% 63% 23% 8% 4% 2%
9 1630 1224 75.09% 64% 21% 9% 3% 3%
10 1644 1213 73.78% 61% 24% 10% 4% 1%

16157 11875 73.49% 63% 22% 9% 4% 2%

TABLE V
CROSS VALIDATION RESULT WITHOUT CONTEXT

Fold #Tests #Passed Precision R1 R2 R3 R4 R5
1 1546 855 55.30% 53% 22% 12% 7% 6%
2 1652 997 50.35% 50% 22% 13% 8% 7%
3 1594 884 55.45% 55% 21% 10% 9% 5%
4 1592 864 54.27% 53% 24% 10% 8% 5%
5 1656 910 54.95% 52% 21% 12% 9% 6%
6 1571 917 58.37% 54% 21% 12% 6% 7%
7 1638 886 54.09% 50% 25% 12% 7% 6%
8 1634 937 57.34% 54% 24% 11% 7% 4%
9 1630 945 57.97% 54% 23% 10% 7% 6%
10 1644 946 57.54% 52% 21% 14% 7% 6%

16157 9141 56.57% 53% 22% 11% 8% 6%

VII. CONCLUSIONS

In this document we explored recommender systems for
visual programming environments. We looked at previous



work performed in the field of recommender systems both
for text- and graph-based environments. We then proposed an
implementation of a recommender system in the Blueprint en-
vironment found in Unreal Engine 4. Using an implementation
of the proposed recommender system we then performed an
evaluation in the form of user tests and an automated test.
From the automated test we can see that with the current
approach we are able to provide a correct suggestion in
a 5-entry short-list in 73% of the situations. From timing
measurements obtained from the user tests we can see that the
current system does not help productivity and in our test case
on average slightly slowed the users down (4%). This could be
caused by the user test participants being unfamiliar with the
system or the system being rendered useless by the specific
workflow they had previously developed while working in
Blueprint. In spite of the decreased productivity the perceived
productivity increased when using the suggester system as
indicated by the user survey.

VIII. FURTHER RESEARCH

A. Wisdom of the Crowds

Currently all suggestions have to come from the local
database of Blueprints found in the project of the user. Koop
et al. suggested that the wisdom of the crowds could be
leveraged to generate suggestions from the community [15]. A
way of implementing this is building a centralized server that
receives suggestions from all clients that use the plugin and in
turn serves suggestion from all accumulated suggestions. An
interesting field of research might be to explore the effect on
the quality of suggestions by using such a system.

B. Localized cache

Another addition might be the addition of a localized cache.
As Tu et al. discussed every programmer has their own
programming style [11]. It might be worthwhile to explore
whether or not this is also the case in a VPE. By creating
two suggestion caches: a global cache built from all available
graphs and a local cache from the current Blueprint accuracy
might be increased. Suggestions including graph-local vari-
ables can also be stored in the local cache to avoid suggestion
interference in other graphs.

C. User tests

Further user testing has to be performed to give more
accurate results about the impact a suggester system has on
workflow. Due to time constraints the user tests performed
in this research was limited in scope. To fully investigate
the impact of such a system a longer test would have to be
performed where the participants have ample time to adjust
and incorporate the suggestions in their workflow.

D. Pin differentiation

The current implementation creates the nodes based on data-
types only. An improvement to this might be to also take the
pin name into consideration while generating and querying

suggestions. This will allow the system to differentiate be-
tween pins of the same type on a node. This might lead to
more accurate suggestions but could reduce the amount of
suggestions that can be found for a particular situation. It
might be interesting to see if this trade-off improves the quality
of suggestions made by the suggester system.

REFERENCES

[1] I. Epic Games, “Unreal engine technology,” 2015.
[Online]. Available: https://www.unrealengine.com/

[2] G. Crytek, “Cryengine,” 2015. [Online]. Available:
http://cryengine.com/

[3] A. Nguyen, T. Nguyen, H. Nguyen, A. Tamrawi,
H. Nguyen, J. Al-Kofahi, and T. Nguyen,
“Graph-based pattern-oriented, context-sensitive
source code completion,” Proceedings of the
34th International Conference on Software
Engineering, pp. 69–79, 2012. [Online].
Available: http://ieeexplore.ieee.org.cyber.usask.
ca/xpl/articleDetails.jsp?tp=&arnumber=6227205&
contentType=Conference+Publications&searchField=
Search_All&queryText=Graph-based+pattern-oriented,
+context-sensitive+source+code+completion

[4] M. Bruch, M. Monperrus, M. Mezini, and L. Briand,
“Learning from examples to improve code completion
systems,” Proceedings of the 7th joint meeting of
the European software engineering conference and the
ACM SIGSOFT symposium on The foundations of
software engineering on European software engineering
conference and foundations of software engineering
symposium - E, p. 213, 2009. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1595696.1595728

[5] R. Robbes and M. Lanza, “How program history can
improve code completion,” ASE 2008 - 23rd IEEE/ACM
International Conference on Automated Software Engi-
neering, Proceedings, pp. 317–326, 2008.

[6] C. Franks, Z. Tu, P. Devanbu, and V. Hellendoorn,
“CACHECA: A Cache Language Model Based
Code Suggestion Tool,” ICSE Demonstration Track,
2015. [Online]. Available: http://www.zptu.net/papers/
icse2015_cacheca.pdf

[7] Microsoft, “Using intellisense,” 2015. [On-
line]. Available: https://msdn.microsoft.com/en-us/
library/hcw1s69b.aspx

[8] B.-j. P. Hsu and G. Ottaviano, “Space-Efficient Data
Structures for Top- k Completion,” Proceedings of
the 22Nd International Conference on World Wide
Web, pp. 583–593, 2013. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2488388.2488440

[9] C. E. Shannon, “A mathematical theory of
communication,” The Bell System Technical Journal,
vol. 27, no. July 1928, pp. 379–423, 1948.
[Online]. Available: http://cm.bell-labs.com/cm/ms/what/
shannonday/shannon1948.pdf

[10] K. O’hara, R. Harper, H. Mentis, A. Sellen, and
A. Taylor, “On the Naturalness of Software,” ACM

https://www.unrealengine.com/
http://cryengine.com/
http://ieeexplore.ieee.org.cyber.usask.ca/xpl/articleDetails.jsp?tp=&arnumber=6227205&contentType=Conference+Publications&searchField=Search_All&queryText=Graph-based+pattern-oriented,+context-sensitive+source+code+completion
http://ieeexplore.ieee.org.cyber.usask.ca/xpl/articleDetails.jsp?tp=&arnumber=6227205&contentType=Conference+Publications&searchField=Search_All&queryText=Graph-based+pattern-oriented,+context-sensitive+source+code+completion
http://ieeexplore.ieee.org.cyber.usask.ca/xpl/articleDetails.jsp?tp=&arnumber=6227205&contentType=Conference+Publications&searchField=Search_All&queryText=Graph-based+pattern-oriented,+context-sensitive+source+code+completion
http://ieeexplore.ieee.org.cyber.usask.ca/xpl/articleDetails.jsp?tp=&arnumber=6227205&contentType=Conference+Publications&searchField=Search_All&queryText=Graph-based+pattern-oriented,+context-sensitive+source+code+completion
http://ieeexplore.ieee.org.cyber.usask.ca/xpl/articleDetails.jsp?tp=&arnumber=6227205&contentType=Conference+Publications&searchField=Search_All&queryText=Graph-based+pattern-oriented,+context-sensitive+source+code+completion
http://dl.acm.org/citation.cfm?id=1595696.1595728
http://www.zptu.net/papers/icse2015_cacheca.pdf
http://www.zptu.net/papers/icse2015_cacheca.pdf
https://msdn.microsoft.com/en-us/library/hcw1s69b.aspx
https://msdn.microsoft.com/en-us/library/hcw1s69b.aspx
http://dl.acm.org/citation.cfm?id=2488388.2488440
http://dl.acm.org/citation.cfm?id=2488388.2488440
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf
http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf


Transactions on Computer-Human Interaction, vol. 20,
no. 1, pp. 1–25, 2013. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2442106.2442111

[11] Z. Tu, Z. Su, and P. Devanbu, “On the Localness of
Software,” Proceedings of the 22nd ACM SIGSOFT
International Symposium on Foundations of Software
Engineering, pp. 269–280, 2014.

[12] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and
T. N. Nguyen, “GraPacc: A graph-based pattern-oriented,
context-sensitive code completion tool,” Proceedings -
International Conference on Software Engineering, pp.
1407–1410, 2012.

[13] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M.
Al-Kofahi, and T. N. Nguyen, “Graph-based Mining of
Multiple Object Usage Patterns,” Proceedings of the the
7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering, pp. 383–392,
2009. [Online]. Available: http://doi.acm.org/10.1145/
1595696.1595767

[14] F. T. D. Oliveira, L. Murta, C. Werner, and M. Mattoso,
“Using Provenance to Improve Workflow Design,”
Lecture Notes in Computer Science, 2008. [Online].
Available: http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.165.6991

[15] D. Koop, C. E. Scheidegger, S. P. Callahan, J. Freire, and
C. T. Silva, “VisComplete: Automating suggestions for
visualization pipelines,” IEEE Transactions on Visualiza-
tion and Computer Graphics, vol. 14, no. 6, pp. 1691–
1698, 2008.

[16] VisTrails, “Vistrails,” 2015. [Online]. Available: http:
//www.vistrails.org/

[17] M. Bruch, T. Schäfer, and M. Mezini, “On evaluating
recommender systems for API usages,” Proceedings of
the 2008 international workshop on Recommendation
systems for software engineering - RSSE ’08, p. 16,
2008. [Online]. Available: http://portal.acm.org/citation.
cfm?doid=1454247.1454254

[18] R. Kohavi, “A Study of Cross-Validation and Bootstrap
for Accuracy Estimation and Model Selection,” Interna-
tional Joint Conference on Artificial Intelligence, vol. 14,
no. 12, pp. 1137–1143, 1995.

http://dl.acm.org/citation.cfm?id=2442106.2442111
http://dl.acm.org/citation.cfm?id=2442106.2442111
http://doi.acm.org/10.1145/1595696.1595767
http://doi.acm.org/10.1145/1595696.1595767
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.6991
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.6991
http://www.vistrails.org/
http://www.vistrails.org/
http://portal.acm.org/citation.cfm?doid=1454247.1454254
http://portal.acm.org/citation.cfm?doid=1454247.1454254

	I Introduction
	II Problem Definition
	III Previous Work
	III-A Text based recommender systems
	III-B Graph-based recommender systems

	IV Implementation
	IV-A Proposed prediction structure
	IV-B Selected data gathering method
	IV-C Proposed suggestion generation algorithm

	V Test Design
	V-A User tests
	V-B Context importance test

	VI Results
	VI-A User tests
	VI-B User test survey
	VI-C Context importance result

	VII Conclusions
	VIII Further Research
	VIII-A Wisdom of the Crowds
	VIII-B Localized cache
	VIII-C User tests
	VIII-D Pin differentiation


